Abstract

AbstractSummary: The effects of various additives: poly(D‐lactic acid) (PDLA), talc, fullerene C60, montmorillonite, and various polysaccharides, on the non‐isothermal crystallization behavior of poly(L‐lactic acid) (PLLA), during both the heating of melt‐quenched films from room temperature, and the cooling of as‐cast films from the melt, was investigated. When the melt‐quenched PLLA films were heated from room temperature, the overall PLLA crystallization was accelerated upon addition of PDLA or the stereocomplex crystallites formed between PDLA and PLLA, the mixtures containing PDLA, and the mixture of talc and montmorillonite. No significant effects on the overall PLLA crystallization were observed for talc, C60, montmorillonite, and the mixtures containing C60. Such rapid completion of the overall PLLA crystallization upon addition of the aforementioned additives can be ascribed to the increased density (number per unit volume or area) of PLLA spherulites. When the as‐cast PLLA films were cooled from the melt, the overall PLLA crystallization completed rapidly, upon addition of PDLA, talc, C60, montmorillonite, and their mixtures. Such rapid overall PLLA crystallization is attributable to the increased density of the PLLA spherulites and the higher nucleation temperature for PLLA crystallization. In contrast, the addition of various polysaccharides has no significant effect, or only a very small effect, on the overall PLLA crystallization during heating from room temperature or during cooling from the melt. This finding means that the polysaccharides can be utilized as low‐cost fillers for PLLA‐based materials, without disturbing the crystallization of the PLLA. The effect of additives in accelerating the overall PLLA crystallization during cooling from the melt, decreased in the following order: PDLA > talc > C60 > montmorillonite > polysaccharides.Polarization optical photomicrographs of pure PLLA, and the PLLA‐F film, with the fullerene additive, during cooling from the melt (Process IIB). Both of the photomicrographs were taken at 120 °C.magnified imagePolarization optical photomicrographs of pure PLLA, and the PLLA‐F film, with the fullerene additive, during cooling from the melt (Process IIB). Both of the photomicrographs were taken at 120 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.