Abstract

Bio-based polyurethane materials are broadly applied in medicine as drug delivery systems. Nevertheless, their synthesis comprises the use of petroleum-based toxic amines, isocyanates and polyols, and their biocompatibility or functionalization is limited. Therefore, the use of lysine residues as amine sources to create non-isocyanate urethane (NIU) linkages was investigated. Therefore, a five-membered biscyclic carbonate (BCC) was firstly synthetized and reacted with a protected lysine, a tripeptide and a heptapeptide to confirm the urethane linkage formation with lysine moiety and to optimize reaction conditions. Afterwards, the reactions between BCC and a model protein, elastin-like protein (ELP), and β-Lactoglobulin (BLG) obtained from whey protein, respectively, were performed. The synthesized protein materials were structural, thermally and morphologically characterized to confirm the urethane linkage formation. The results demonstrate that using both simple and more complex source of amines (lysine), urethane linkages were effectively achieved. This pioneering approach opens the possibility of using proteins to develop non-isocyanate polyurethanes (NIPUs) with tailored properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.