Abstract
Obstructive sleep apnea (OSA) is characterized by recurrent upper airway obstructions during sleep. The most common animal model of OSA is based on subjecting rodents to intermittent hypoxic exposures and does not mimic important OSA features, such as recurrent hypercapnia and increased inspiratory efforts. To circumvent some of these issues, a novel murine model involving non-invasive application of recurrent airway obstructions was developed. An electronically controlled airbag system is placed in front of the mouse's snout, whereby inflating the airbag leads to obstructed breathing and spontaneous breathing occurs with the airbag deflated. The device was tested on 29 anesthetized mice by measuring inspiratory effort and arterial oxygen saturation (SaO₂). Application of recurrent obstructive apneas (6 s each, 120/h) for 6h resulted in SaO₂ oscillations to values reaching 84.4 ± 2.5% nadir, with swings mimicking OSA patients. This novel system, capable of applying controlled recurrent airway obstructions in mice, is an easy-to-use tool for investigating pertinent aspects of OSA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.