Abstract

BackgroundAs part of ongoing co-surveillance of intestinal schistosomiasis and malaria in Ugandan school children, a non-invasive detection method for amplification of Plasmodium DNA using real-time (rt)PCR analysis of ethanol preserved faeces (EPF) was assessed. For diagnostic tabulations, results were compared to rtPCR analysis of dried blood spots (DBS) and field-based point-of-care (POC) rapid diagnostic tests (RDTs).MethodsA total of 247 school children from 5 primary schools along the shoreline of Lake Albert were examined with matched EPF and DBS obtained. Mean prevalence and prevalence by school was calculated by detection of Plasmodium DNA by rtPCR using a 18S rDNA Taqman® probe. Diagnostic sensitivity, specificity, positive and negative predictive values were tabulated and compared against RDTs.ResultsBy rtPCR of EPF and DBS, 158 (63.9%; 95% CI 57.8–69.7) and 198 (80.1%, 95% CI 74.7–84.6) children were positive for Plasmodium spp. By RDT, 138 (55.8%; 95% CI 49.6–61.9) and 45 (18.2%; 95% CI 13.9–23.5) children were positive for Plasmodium falciparum, and with non-P. falciparum co-infections, respectively. Using RDT results as a convenient field-based reference, the sensitivity of rtPCR of EPF and DBS was 73.1% (95% CI 65.2–79.8) and 94.2% (95% CI 88.9–97.0) while specificity was 47.7% (95% CI 38.5–57.0) and 37.6% (95% CI 29.0–46.9), respectively. With one exception, school prevalence estimated by analysis of EPF was higher than that by RDT. Positive and negative predictive values were compared and discussed.ConclusionsIn this high transmission setting, EPF sampling with rtPCR analysis has satisfactory diagnostic performance in estimation of mean prevalence and prevalence by school upon direct comparison with POC-RDTs. Although analysis of EPF was judged inferior to that of DBS, it permits an alternative non-invasive sampling regime that could be implemented alongside general monitoring and surveillance for other faecal parasites. EPF analysis may also have future value in passive surveillance of low transmission settings.

Highlights

  • As part of ongoing co-surveillance of intestinal schistosomiasis and malaria in Ugandan school children, a non-invasive detection method for amplification of Plasmodium DNA using real-timePCR analysis of ethanol preserved faeces (EPF) was assessed

  • Of 247 school-aged children that tested for malaria infection by rapid diagnostic tests (RDT) using malaria Ag P.f/Pan test, 138 (55.8%; 95% confidence interval (CI) 49.6–61.9) were positive for P. falciparum (PfHRP-2-detecting RDTs), and 45 samples (18.2%; 95% CI 13.9–23.5) were positive for Plasmodium species (PfHRP-II and pan-pLDH test lines)

  • A singleplex real-time PCR (rtPCR)-based assay for dried blood spots (DBS) revealed that 198 (80.1%, 95% CI 74.7–84.6) children were positive for Plasmodium DNA whereas a singleplex rtPCR-based assay for EPF revealed that 158 (63.9%; 95% CI 57.8–69.7) children were positive, (Table 1)

Read more

Summary

Introduction

As part of ongoing co-surveillance of intestinal schistosomiasis and malaria in Ugandan school children, a non-invasive detection method for amplification of Plasmodium DNA using real-time (rt)PCR analysis of ethanol preserved faeces (EPF) was assessed. On the Lake Albert shoreline, intestinal schistosomiasis is hyperendemic [15] and ongoing school-based preventive chemotherapy control has taken place, with periodic disease surveillance, over the last 15 years [16, 17]. As part of ongoing surveillance of intestinal schistosomiasis in this area, Al-Shehri et al [15] revealed that over half of the sampled school children harboured RDT positive asymptomatic infections, a quarter being anaemic (< 115 g/L) and 11% had faecal occult blood in stool. The local prevalence of egg-patent intestinal schistosomiasis was 46.5%, ranging in excess of 80% in certain schools along the immediate shoreline [15]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.