Abstract

Non-invasive near-infrared fluorescence (NIRF) imaging is a powerful tool to study pathophysiology in a wide variety of animal disease models including brain diseases. However, especially in NIRF imaging of the brain or other deeper laying target sites, background fluorescence emitted from the scalp or superficial blood vessels can impede the detection of fluorescence in deeper tissue. Here, we introduce an effective method to reduce the impact of fluorescence from superficial layers. The approach uses excitation light at two different wavelengths generating two images with different depth sensitivities followed by an adapted subtraction algorithm. This technique leads to significant enhancement of the contrast and the detectability of fluorochromes located in deep tissue layers in tissue simulating phantoms and murine models with stroke.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.