Abstract
Regional cerebral blood flow (rCBF) quantification using 123I-N-isopropyl-p-iodoamphetamine (123I-IMP) requires an invasive, one-time-only arterial blood sampling for measuring the 123I-IMP arterial blood radioactivity concentration (Ca10). The purpose of this study was to estimate Ca10 by machine learning (ML) using artificial neural network (ANN) regression analysis and consequently calculating rCBF and cerebral vascular reactivity (CVR) in the dual-table autoradiography (DTARG) method. This retrospective study included 294 patients who underwent rCBF measurements through the 123I-IMP DTARG. In the ML, the objective variable was defined by the measured Ca10, whereas the explanatory variables included 28 numeric parameters, such as patient characteristic values, total injection 123I-IMP radiation dose, cross-calibration factor, and the distribution of 123I-IMP count in the first scan. ML was performed with training (n = 235) and testing (n = 59) sets. Ca10 was estimated in testing set by our proposing model. Alternatively, the estimated Ca10 was also calculated via the conventional method. Subsequently, rCBF and CVR were calculated using estimated Ca10. Pearson's correlation coefficient (r-value) for the goodness of fit and the Bland-Altman analysis for assessing the potential agreement and bias were performed between the measured and estimated values. The r-value of Ca10 estimated by our proposed model was higher compared with the conventional method (0.81 and 0.66, respectively). In the Bland-Altman analysis, mean differences of 4.7 (95% limits of agreement (LoA): -18-27) and 4.1 (95% LoA: -35-43) were observed using proposed model and the conventional method, respectively. The r-values of rCBF at rest, rCBF after the acetazolamide challenge, and CVR calculated using the Ca10 estimated by our proposed model were 0.83, 0.80 and 0.95, respectively. Our proposed ANN-based model could accurately estimate the Ca10, rCBF, and CVR in DTARG. These results would enable non-invasive rCBF quantification in DTARG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.