Abstract

Mouse models are common tools for examining post-traumatic osteoarthritis (OA), which involves cartilage deterioration following injury or stress. One challenge to current mouse models is longitudinal monitoring of the cartilage deterioration in vivo in the same mouse during an experiment. The objective of this study was to assess the feasibility for using a novel transgenic mouse for non-invasive quantification of cartilage. Chondrocytes are defined by expression of the matrix protein aggrecan, and we developed a novel mouse containing a reporter luciferase cassette under the inducible control of the endogenous aggrecan promoter. We generated these mice by crossing a Cre-dependent luciferase reporter allele with an aggrecan creERT2 knockin allele. The advantage of this design is that the targeted knockin retains the intact endogenous aggrecan locus and expresses the tamoxifen-inducible CreERT2 protein from a second IRES-driven open reading frame. These mice display bioluminescence in the joints, tail, and trachea, consistent with patterns of aggrecan expression. To evaluate this mouse as a technology for non-invasive quantification of cartilage loss, we characterized the relationship between loss of bioluminescence and loss of cartilage after induction with (i) ex vivo collagenase digestion, (ii) an in vivo OA model utilizing treadmill running, and (iii) age. Ex vivo experiments revealed that collagenase digestion of the femur reduced both luciferase signal intensity and pixel area, demonstrating a link between cartilage degradation and bioluminescence. In an in vivo model of experimental OA, we found decreased bioluminescent signal and pixel area, which correlated with pathological disease. We detected a decrease in both bioluminescent signal intensity and area with natural aging from 2 to 13 months of age. These results indicate that the bioluminescent signal from this mouse may be used as a non-invasive quantitative measure of cartilage. Future studies may use this reporter mouse to advance basic and preclinical studies of murine experimental OA with applications in synovial joint biology, disease pathogenesis, and drug delivery.

Highlights

  • Osteoarthritis (OA) affects the majority of the human population older than age 65, making it the most common degenerative joint disease [1]

  • Aggrecan is a key structural component of cartilage that is expressed in chondrocytes [30]

  • An aggrecan-driven tamoxifen-inducible Agc-cre transgene [21] was bred across the ubiquitously transcribed cre-dependent luciferase cassette, LoxP-STOP-LoxP-Luciferase reporter mice (LSL-Luc) and both transgenes were bred to homozygosity (Agc-cre/cre;LSL-Luc/Luc)

Read more

Summary

Introduction

Osteoarthritis (OA) affects the majority of the human population older than age 65, making it the most common degenerative joint disease [1]. Mouse models for OA are hindered by a lack of standardized grading scales [6] and imaging techniques [7]. Murine experimental arthritis can be induced by a variety of methods including proteolytic enzyme injection [8], chemical-induced cell death [9], surgical destabilization [10,11], and applied external loading [12]. Each of these approaches mimics pathology of human disease including cartilage degeneration, chondrocyte death, and cartilage deterioration. This study focused on improving quantification of the progression of OA in mouse models through the use of in vivo bioluminescence imaging

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call