Abstract

To assess whether conventional magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), and dynamic susceptibility contrast-enhanced perfusion-weighted imaging (DSC-PWI) could non-invasively predict p53 and Ki-67 labelling index (LI) and O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status in adult isocitrate dehydrogenase (IDH) wild-type glioblastomas. The conventional MRI, DWI, and DSC-PWI results of 120 adult patients with IDH wild-type glioblastomas were reviewed retrospectively and their efficacy was analysed using chi-square tests or Fisher's exact test. Relative minimum apparent diffusion coefficient (rADCmin) and relative maximum cerebral blood volume (rCBVmax) values were compared between glioblastomas with different molecular statuses using the Mann-Whitney U-test. Receiver operating characteristic (ROC) curves and logistic regression were used to evaluate predictive performance. Glioblastomas with a high p53 LI were more likely to show a well-defined enhancement margin (p=0.047). Glioblastomas in the high-Ki-67-LI group demonstrated significantly lower rADCmin (p<0.001) and higher rCBVmax (p=0.001) values than those in the low-Ki-67-LI group. Tumours without MGMT promoter methylation showed lower rADCmin (p<0.001) and higher rCBVmax (p<0.001) values than those with it. The rCBVmax value exhibited a greater efficacy in predicting the MGMT promoter methylation status of adult IDH wild-type glioblastomas than the rADCmin value (p=0.001). The present results suggest that conventional and DWI and DSC-PWI results are influenced by the molecular status of the glioblastoma and indicate that DWI and DSC-PWI may help to identify regions of high invasiveness within heterogeneous glioblastomas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call