Abstract
Preclinical experimental models of hepatocellular carcinoma (HCC) that recapitulate human disease represent an important tool to study tumorigenesis and evaluate novel therapeutic approaches. Non-invasive whole-body imaging using positron emission tomography (PET) provides critical insights into the in vivo characteristics of tissues at the molecular level in real-time. We present here a protocol for orthotopic HCC xenograft creation with and without hepatic artery ligation (HAL) to induce tumor hypoxia and the assessment of their tumor metabolism in vivo using [18F]Fluoromisonidazole ([18F]FMISO) and [18F]Fluorodeoxyglucose ([18F]FDG) PET/magnetic resonance (MR) imaging. Tumor hypoxia could be readily visualized using the hypoxia marker [18F]FMISO, and it was found that the [18F]FMISO uptake was higher in HCC mice that underwent HAL than in the non-HAL group, whereas [18F]FDG could not distinguish tumor hypoxia between the two groups. HAL tumors also displayed a higher level of hypoxia-inducible factor (HIF)-1α expression in response to hypoxia. Quantification of HAL tumors showed a 2.3-fold increase in [18F]FMISO uptake based on the standardized value uptake (SUV) approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.