Abstract

Metal-oxide-based gas sensors are extensively utilized across various domains due to their cost-effectiveness, facile fabrication, and compatibility with microelectronic technologies. The copper (Cu)-based multifunctional polymer-enhanced sensor (CuMPES) represents a notably tailored design for non-invasive environmental monitoring, particularly for detecting diverse gases with a low concentration. In this investigation, the Cu-CuO/PEDOT nanocomposite was synthesized via a straightforward chemical oxidation and vapor-phase polymerization. Comprehensive characterizations employing X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and micro Raman elucidated the composition, morphology, and crystal structure of this nanocomposite. Gas-sensing assessments of this CuMPES based on Cu-CuO/PEDOT revealed that the response current of the microneedle-type CuMPES surpassed that of the pure Cu microsensor by nearly threefold. The electrical conductivity and surface reactivity are enhanced by poly (3,4-ethylenedioxythiophene) (PEDOT) polymerized on the CuO-coated surface, resulting in an enhanced sensor performance with an ultra-fast response/recovery of 0.3/0.5 s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.