Abstract

A diabetic wound presents a severe risk of infections and other complications because of its slow healing. Evaluating the pathophysiology during wound healing is imperative for wound care, necessitating a proper diabetic wound model and assay for monitoring. The adult zebrafish is a rapid and robust model for studying human cutaneous wound healing because of its fecundity and high similarities to human wound repair. OCTA as an assay can provide three-dimensional (3D) imaging of the tissue structure and vasculature in the epidermis, enabling monitoring of the pathophysiologic alterations in the zebrafish skin wound. We present a longitudinal study for assessing the cutaneous wound healing of the diabetic adult zebrafish model using OCTA, which is of importance for the diabetes research using the alternative animal models. We used non-diabetic (n = 9) and type 1 diabetes mellitus (DM) adult zebrafish models (n = 9). The full-thickness wound was generated on the fish skin, and the wound healing was monitored with OCTA for 15 days. The OCTA results demonstrated significant differences between diabetic and non-diabetic wound healing, involving delayed tissue remodeling and impaired angiogenesis for the diabetic wound, leading to slow wound recovery. The adult zebrafish model and OCTA technique may benefit long-term metabolic disease studies using zebrafish for drug development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.