Abstract

ABSTRACT In this manuscript, a method for noninvasive microwave hyperthermia treatment for bone cancer is proposed. In the proposed method, noninvasive microwave hyperthermia of cancer patient-specific bone models is practiced using an antenna array based on the beamforming technique to locally raise the temperature of the tumor to healing values during keeping healthy tissue at body temperature. The excitation properties of the antenna array elements have been optimized using the Trust Region Framework optimization technique in order to accurately focus. The proposed method is examined at 2.7 and 4.5 GHz, using a flexible antenna array of 1 × 4 antenna elements. Based on the hyperthermia simulation results, when the antenna excitation properties are determined by optimization, it is observed that positive results can be obtained for the treatment of tumorous tissue. In the proposed technique, it is achieved by keeping the heating effect at minimum values in healthy tissues and focusing the power in the tumor position by applying electromagnetic waves to the patient-specific bone model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call