Abstract

Existing load monitoring methods for induction machines are generally effective, but suffer from sensitivity problems at low speeds and non-linearity problems at high supply frequencies. This study proposes a new non-invasive load monitoring method based on giant magnetoresistance flux sensors to trace stray flux leaking from induction motors. Finite element analysis is applied to analyse stray flux features of test machines. Contrary to the conventional methods of measuring stator and/or rotator rotor voltage and current, the proposed method measures the dynamic magnetic field at specific locations and provides time-spectrum features (e.g. spectrograms), response time load and stator/rotor characteristics. Three induction motors with different starting loading profiles are tested at two separate test benches and their results are analysed in the time-frequency domain. Their steady features and dynamic load response time through spectrograms under variable loads are extracted to correlate with load variations based on spectrogram information. In addition, the transient stray flux spectrogram and time information are more effective for load monitoring than steady state information from numerical and experimental studies. The proposed method is proven to be a low-cost and non-invasive method for induction machine load monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.