Abstract
Quantifying population status is a key objective in many ecological studies, but is often difficult to achieve for cryptic or elusive species. Here, non-invasive genetic capture-mark-recapture (CMR) methods have become a very important tool to estimate population parameters, such as population size and sex ratio. The Eurasian otter (Lutra lutra) is such an elusive species of management concern and is increasingly studied using faecal-based genetic sampling. For unbiased sex ratios or population size estimates, the marking behaviour of otters has to be taken into account. Using 2132 otter faeces of a wild otter population in Upper Lusatia (Saxony, Germany) collected over six years (2006–2012), we studied the marking behaviour and applied closed population CMR models accounting for genetic misidentification to estimate population sizes and sex ratios. We detected a sex difference in the marking behaviour of otters with jelly samples being more often defecated by males and placed actively exposed on frequently used marking sites. Since jelly samples are of higher DNA quality, it is important to not only concentrate on this kind of samples or marking sites and to invest in sufficiently high numbers of repetitions of non-jelly samples to ensure an unbiased sex ratio. Furthermore, otters seemed to increase marking intensity due to the handling of their spraints, hence accounting for this behavioural response could be important. We provided the first precise population size estimate with confidence intervals for Upper Lusatia (for 2012: = 20 ± 2.1, 95% CI = 16–25) and showed that spraint densities are not a reliable index for abundances. We further demonstrated that when minks live in sympatry with otters and have comparably high densities, a non-negligible number of supposed otter samples are actually of mink origin. This could severely bias results of otter monitoring if samples are not genetically identified.
Highlights
Elusive species play an important role in conservation
Using 2132 otter faeces of a wild otter population in Upper Lusatia (Saxony, Germany) collected over six years (2006–2012), we studied the marking behaviour and applied closed population CMR models accounting for genetic misidentification to estimate population sizes and sex ratios
We were interested in whether the three different spraint types are more or less often placed exposed and on frequently used marking sites and whether the latter have more or less often exposed samples
Summary
Elusive species play an important role in conservation. Reliable information of population status and trends are crucial for improving conservation practices and management and for addressing conservation challenges, such as antagonistic interactions between protection and conflict mitigations for species involved in human-wildlife conflicts. Elusive species are difficult to study and we often lack important demographic information. Otters benefit from protective legislations throughout Europe, and since the 1990s otter densities increased including recolonisations of areas from which they were extirpated. Since their main prey is fish, the species’ recovery inevitably resulted in conflicts with fishermen [2]. Important information, such as accurate estimates of population sizes, for reconciling species conservation and human interests are still lacking in most areas of Europe [1]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.