Abstract

To develop a flexible droplet digital PCR (ddPCR) workflow to perform non-invasive prenatal diagnosis via relative mutation dosage (RMD) for maternal pathogenic variants with a range of inheritance patterns, and to compare the accuracy of multiple analytical approaches. Cell free DNA (cfDNA) was tested from 124 archived maternal plasma samples: 88 cases for sickle cell disease and 36 for rare Mendelian conditions. Three analytical methods were compared: sequential probability ratio testing (SPRT), Bayesian and z-score analyses. The SPRT, Bayesian and z-score analyses performed similarly well with correct prediction rates of 96%, 97% and 98%, respectively. However, there were high rates of inconclusive results for each cohort, particularly for z-score analysis which was 31% overall. Two samples were incorrectly classified by all three analytical methods; a false negative result predicted for a fetus affected with sickle cell disease and a false positive result predicting the presence of an X-linked IDS variant in an unaffected fetus. ddPCR can be applied to RMD for diverse conditions and inheritance patterns, but all methods carry a small risk of erroneous results. Further evaluation is required both to reduce the rate of inconclusive results and explore discordant results in more detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.