Abstract

During the pregnancy, fetal electrocardiogram (FECG) is deployed to analyze fetal heart rate (FHR) of the fetus to indicate the growth and health of the fetus to determine any abnormalities and prevent diseases. The fetal electrocardiogram monitoring can be carried out either invasively by placing the electrodes on the scalp of the fetus, involving the skin penetration and the risk of infection, or non-invasively by recording the fetal heart rate signal from the mother’s abdomen through a placement of electrodes deploying portable, wearable devices. Non-invasive fetal electrocardiogram (NIFECG) is an evolving technology in fetal surveillance because of the comfort to the pregnant women and being achieved remotely, specifically in the unprecedented circumstances such as pandemic or COVID-19. Textiles have been at the heart of human technological progress for thousands of years, with textile developments closely tied to key inventions that have shaped societies. The relatively recent invention of smart textiles is set to push boundaries again and has already opened the potential for garments relevant to medicine, and health monitoring. This paper aims to discuss the different technologies and methods used in non-invasive fetal electrocardiogram (NIFECG) monitoring as well as the potential and future research directions of NIFECG in the smart textiles area.

Highlights

  • Electrocardiogram (ECG) can be defined as a graphical representation of bioelectrical signals helpful in determining the functionality of the heart through the analysis of graphic representation obtained during the measurement of cardiac cycle of the person or human body

  • This paper provided a review of monitoring techniques including CTG, PPG, and Doppler sound, with the emphasis on fetal electrocardiogram (FECG), to detect fetal heart rate to determine the well-being and growth of the fetus

  • One of the key drawbacks of current non-invasive fetal electrocardiogram (NIFECG) is the use of hydrogel electrodes, which tend to degrade over time

Read more

Summary

Introduction

Electrocardiogram (ECG) can be defined as a graphical representation of bioelectrical signals helpful in determining the functionality of the heart through the analysis of graphic representation obtained during the measurement of cardiac cycle of the person or human body. The monitoring of fetal heart rate is essential to identify the proper supply of oxygen, nutrients, and growth of the fetus. Monitoring of the fetus during pregnancy may help in recognizing the pathological conditions, such as fetal hypoxia, allowing prompt medical interventions before irreversible changes taking place. 1, that provides an electrical representation of fetal heart rate (FHR). It is composed of associated with thethe contraction ofthree threeparts: parts:(i). R-wave it is extremely reliable, and tion of the ventricles, and due to the magnitude of the R-wave it is extremely reliable, and (iii) the.

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.