Abstract

AimsElectromechanical de-coupling is hypothesized to explain non-response of dyssynchrony patient to cardiac resynchronization therapy (CRT). In this pilot study, we investigated regional electromechanical uncoupling in 10 patients referred for CRT using two non-invasive electrical and mechanical imaging techniques (CMR tissue tracking and ECGI). Methods and resultsReconstructed regional electrical and mechanical activation captured delayed LBBB propagation direction from septal to anterior/inferior and finally to lateral walls as well as from LV apical to basal. All 5 responders demonstrated significantly delayed mechanical and electrical activation on the lateral LV wall at baseline compared to the non-responders (P<.05). On follow-up ECGI, baseline electrical activation patterns were preserved in native rhythm and global LV activation time was reduced with biventricular pacing. ConclusionsThe combination of novel imaging techniques of ECGI and CMR tissue tracking can be used to assess spatial concordance of LV electrical and mechanical activation to gain insight into electromechanical coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.