Abstract
BackgroundFeline osteoarthritis (OA) leads to chronic pain and somatosensory sensitisation. In humans, sensory exposure can modulate chronic pain. Recently, electroencephalography (EEG) revealed a specific brain signature to human OA. However, EEG pain characterisation or its modulation does not exist in OA cats, and all EEG were conducted in sedated cats, using intradermal electrodes, which could alter sensory (pain) perception. New methodCats (n=11) affected by OA were assessed using ten gold-plated surface electrodes. Sensory stimuli were presented in random orders: response to mechanical temporal summation, grapefruit scent and mono-chromatic wavelengths (500 nm-blue, 525 nm-green and 627 nm-red light). The recorded EEG was processed to identify event-related potentials (ERP) and to perform spectral analysis (z-score). ResultsThe procedure was well-tolerated. The ERPs were reported for both mechanical (F3, C3, Cz, P3, Pz) and olfactory stimuli (Cz, Pz). The main limitation was motion artifacts. Spectral analysis revealed a significant interaction between the power of EEG frequency bands and light wavelengths (p<0.001). All wavelengths considered, alpha band proportion was higher than that of delta and gamma bands (p<0.044), while the latter was lower than the beta band (p<0.016). Compared to green and red, exposure to blue light elicited distinct changes in EEG power over time (p<0.001). Comparison with existing methodThis is the first demonstration of EEG feasibility in conscious cats with surface electrodes recording brain activity while exposing them to sensory stimulations. ConclusionThe identification of ERPs and spectral patterns opens new avenues for investigating feline chronic pain and its potential modulation through sensory interventions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.