Abstract

BackgroundThe detection of microvascular damage in type 1 diabetes is difficult and traditional investigations do not detect changes until they are well established. The purpose of this study was to investigate the combined ability of nailfold capillaroscopy, laser Doppler flowmetry, retinal vessel analysis and 24-hr ambulatory blood pressure monitoring to detect early microvascular changes in a paediatric and adolescent population with type 1 diabetes.MethodsPatients aged between 8 – 18 years with type I diabetes and no other autoimmune conditions were studied. The participants underwent the above cardiac and vascular investigations in a single three-hour session. Standard parameters including HbA1c were also investigated. Associations between all parameters were described by correlation analysis. Fisher’s exact and t-tests determined the association with clinical findings.Results26 participants were recruited. The mean HbA1c was 8.1% (SD ± 1.1) with a mean duration of type 1 diabetes of 7.9 years (SD ± 3.4). Three participants had microalbuminuria and one had early signs of retinopathy. Participants with microvascular complications had more avascular areas on nailfold capillaroscopy (p = 0.03). Recent HbA1c was positively associated with the number of nailfold microhaemorrhages (p = 0.03) Decreased baseline perfusion by laser Doppler flowmetry was associated with increased capillary density (p = 0.001) and an increased number of microaneurysms (p = 0.04) on nailfold capillaroscopy.ConclusionsThis pilot study has shown that in children and adolescents with established type 1 diabetes, abnormal microvasculature can be detected by these investigations. These markers were also positively associated with evidence of suboptimal diabetes control as assessed by HbA1c. Further research will be necessary to determine the practical role of these investigations in the management and progress of the complications of type 1 diabetes.Trial registrationClinical Trial number NCT01279928, ClinicalTrials.gov

Highlights

  • The detection of microvascular damage in type 1 diabetes is difficult and traditional investigations do not detect changes until they are well established

  • Microvascular changes found on standard investigations were observed in four participants, one with signs of retinopathy and three with microalbuminuria

  • Other variables associated with laser Doppler flowmetry and nailfold capillaroscopy were not significantly. This pilot study has demonstrated that results from nailfold capillaroscopy, laser Doppler flowmetry and retinal vessel analysis were significantly linked to type 1 diabetes-related microvascular damage, such as retinopathy and the presence of microalbuminuria, as well as longer diabetes duration and higher HbA1c results

Read more

Summary

Introduction

The detection of microvascular damage in type 1 diabetes is difficult and traditional investigations do not detect changes until they are well established. The purpose of this study was to investigate the combined ability of nailfold capillaroscopy, laser Doppler flowmetry, retinal vessel analysis and 24-hr ambulatory blood pressure monitoring to detect early microvascular changes in a paediatric and adolescent population with type 1 diabetes. Current techniques detect damage to the cardiovascular system once disease is well established. This pilot study evaluated the use of other more recent investigation techniques: nailfold capillaroscopy, laser Doppler flowmetry, retinal vessel analysis and 24-hour ambulatory blood pressure monitoring (24-hr ABPM) - in a paediatric and adolescent population with type 1 diabetes, in determining early microvascular changes. Nailfold capillaroscopy visualises the capillary network and is a non-invasive painless technique. There are different capillary abnormalities which can occur at the nailfold, including: Normal patterns of capillary vessels that look like hairpins and are regularly placed along the nailfold [1,2,3]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call