Abstract

Parkinson's disease (PD) is characterized by dopaminergic neuron loss and α-synuclein (α-Syn) aggregates, but lacks effective treatments for the disease progression and non-motor symptoms. Recently, combined 40 Hz auditory and visual stimulation is emerging as a promising non-invasive method to decrease amyloid and improve cognition in Alzheimer's disease (AD), but whether this treatment can modify α-Syn-induced PD pathology remains unclear. Here we evaluated the effects of chronic exposure to 40 Hz and 80 Hz auditory and visual stimulation on α-Syn accumulation and the functional effects of 40 Hz stimulation on motor, cognitive and mood dysfunctions in PD mice. We found that 40 Hz and 80 Hz auditory and visual stimulation activated multiple cortical regions, entrained gamma oscillations and markedly attenuated p-α-Syn deposition in neurons, but not astrocytes, microglial cells in the primary and secondary motor cortex (M1, M2), medial prefrontal cortex (mPFC) and the striatum. Moreover, 40 Hz stimulation significantly reduced cell apoptosis in M1, increased the neuromuscular strength selectively in PD mice, which correlated with p-α-Syn reduction in the motor cortex. In addition, 40 Hz stimulation improved spatial working memory and decreased depressive-like behaviors specifically in PD mice, which correlated with p-α-Syn reduction in mPFC, but promoted anxiety-like behaviors and increased stress-related adreno-cortico-tropic-hormone (ACTH), corticosterone levels in the plasma of normal mice. Collectively, we demonstrated that chronic multisensory gamma stimulation (40 Hz and 80 Hz) significantly attenuates α-Syn deposition in neurons of the interconnected cortex and 40 Hz stimulation improved neuromuscular strength, spatial working memory, and reduced depressive behaviors, which support its non-invasive therapeutic potential for modifying PD progression and treating non-motor symptoms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.