Abstract

Contemporary tissue engineered heart valves seem to have sufficient mechanical strength for implantation [1]. Nevertheless, mechanical properties, tissue structure and architecture still need to be improved. Recent studies indicate enhancement of mechanical properties by applying cyclic diastolic pressure loads to the developing tissue in a bioreactor system [2]. However, current bioreactors operate with a preset transvalvular pressure applied to the tissue. Mechanical properties of the engineered construct may vary during culturing and consequently, the pressure-induced deformations are unknown. To systematically study the effects of mechanical straining on tissue development and to design an optimal conditioning protocol, real-time measurement and control of local tissue strains are desired.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.