Abstract

Speech quality is frequently affected by a variety factors in online conferencing applications, such as background noise, reverberation, packet loss and network jitter. In real scenarios, it is impossible to obtain a clean reference signal for evaluating the quality of the conferencing speech. Therefore, an effective non-intrusive speech quality assessment (NISQA) method is necessary. In this paper, we propose a new network framework for NISQA based on ResNet and BiLSTM. ResNet is utilized to extract local features, while BiLSTM is used to integrate representative features with long-term time dependencies and sequential characteristics. Considering that ResNet may result in the loss of context information when applied to the NISQA task, we propose a variant of ResNet which can preserve the time series information of the conferencing speech. The experimental results demonstrate that the proposed method has a high correlation with the mean opinion score of clean, noisy and processed speech.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.