Abstract
SummaryThis paper presents a non‐intrusive reduced order model for general, dynamic partial differential equations. Based upon proper orthogonal decomposition (POD) and Smolyak sparse grid collocation, the method first projects the unknowns with full space and time coordinates onto a reduced POD basis. Then we introduce a new least squares fitting procedure to approximate the dynamical transition of the POD coefficients between subsequent time steps, taking only a set of full model solution snapshots as the training data during the construction. Thus, neither the physical details nor further numerical simulations of the original PDE model are required by this methodology, and the level of non‐intrusiveness is improved compared with existing reduced order models. Furthermore, we take adaptive measures to address the instability issue arising from reduced order iterations of the POD coefficients. This model can be applied to a wide range of physical and engineering scenarios, and we test it on a couple of problems in fluid dynamics. It is demonstrated that this reduced order approach captures the dominant features of the high‐fidelity models with reasonable accuracy while the computation complexity is reduced by several orders of magnitude. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Fluids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.