Abstract

Laser-induced breakdown spectroscopy (LIBS) has been evaluated for on-line, simultaneous multi-species impurity monitoring in hydrogen. A miniature spectrometer with spectral coverage of 620–800 nm and a gated detection system with spectral coverage of 40 nm were both used to record LIBS spectra from the spark produced in sample gas by a frequency-doubled Nd YAG laser. The effect of pressure on detecting the impurity (e.g., nitrogen, argon, and oxygen) in hydrogen was studied. LIBS spectra with different impurity levels of nitrogen, argon, and oxygen were recorded, and the intensity of the spectral lines of Ar, O, N, and H observed were used to form calibration plots for impurity measurement. The limits of detection (LODs) for oxygen, argon, and nitrogen in hydrogen were estimated from the calibration obtained with both the gated and ungated detection. The hydrogen impurity measurements based on the ungated miniature system show reliable and reproductive results. But the LODs with this system are about four times higher than the LODs obtained with a gated detection system in this work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call