Abstract

A novel experimental imaging-based method is presented for the non-intrusive determination of shock wave characteristics (i.e. shock wave speed and magnitude, and shock-induced liquid velocity) in a bubbly flow solely from gas bubble velocities. Shock wave speeds are estimated by the relative motion between gas bubbles at two locations by splitting the camera field-of-view using a mirror construction, increasing the dynamic spatial range of the measurement system. Although gas bubbles have in general poor tracing properties of the local fluid velocity, capturing the relative dynamics provides accurate estimates for the shock wave properties. This proposed imaging-based method does not require pressure transducers, the addition of tracer particles, or volumetric reconstruction of the gas bubbles. The shock wave magnitude and shock-induced liquid velocity are computed with a hydrodynamic model, which only requires non-intrusively measured variables as input. Two reference measurements, based on pressure transducers and the liquid velocity field by particle image velocimetry, show that the proposed method provides reliable estimates for the shock wave front speed and the shock-induced liquid velocity within the experimental range of 70 < U_textrm{s}< 400 m/s.Graphical abstract

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call