Abstract
Home energy management system is proposed to reduce the influences caused by the high ratio penetration of renewable energy generation, through managing and dispatching the residential power and energy consumption in the demand side. Being aware of how the electric energy is consumed is a key step of this system. Non-intrusive Load Monitoring is regarded as the most potential method to address this problem, which aims to separate individual appliances in households by decomposing the total power consumption. In recent years, NILM is framed as a multi-label classification problem and many researches has been investigated in this field. In this paper, a non-intrusive method which can identify appliances power usage information from the total power consumption is proposed and thoroughly investigated. Firstly, the random k-labelset multi-label classification algorithm is enhanced by introducing random forest algorithm as base classifier. Then, grid search method and cross validation method are integrated to determine the optimal paraments set. This algorithm is used to achieve the appliances identification. Finally, based on the identification result, the integer linear programming is employed for power estimation of each appliance, especially multi-state appliances. Experimental results on low voltage networks simulator demonstrate that the proposed method has a high identification accuracy compared with the traditional random k-labelset multi-label classification methods with other base classifiers, and it is capable of identifying the power usages of different appliances accurately. The desirable performance of power estimation has broadened the applications of machine learning based non-intrusive energy monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.