Abstract

Although runway separation, based on the probability of collision, has been studied for decades, the mathematical methods proposed by the majority of studies cannot handle complex situations, such as the operation of non-intersecting diverging runways at an airport with multiple runways. By applying a combination method of computer simulation and collision probability calculation, the arrival and departure window (ADW) separation for non-intersecting diverging runways of a multi-runway airport was studied under the emergency avoidance (EA) situation. Combining the example of runways 01L/19R and 11L of Beijing Daxing Airport, the ADW separation settings for the airport’s northward and southward operations were determined to meet the target level of safety. Moreover, the effects of range-type parameters on the ADW separation were quantified. When the EA maximum speed limit and EA minimum climb rate were 200 kt (102.9 m/s) and 10%, respectively, the results were such that no ADW separation was required for northward operation, and the ADW separation was from 3.2 km to 7.1 km for southward operation. Furthermore, the results showed that the proposed method could more accurately describe the nominal trajectories of aircraft and improve the precision of collision probability calculation. Meanwhile, the sensitivity analysis method for range-type parameters could help airports and air traffic control facilities to set reasonable constraints to improve theoretical runway capacity, while satisfying practical feasibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call