Abstract

AbstractThe 3D covalent organic frameworks (COFs) have attracted considerable attention owing to their unique structural characteristics. However, most of 3D COFs have interpenetration phenomena, which will result in decreased surface area and porosities, and thus limited their applications in molecular/gas capture. Developing 3D COFs with non‐fold interpenetration is challenging but significant because of the existence of non‐covalent interactions between the adjacent nets. Herein, a new 3D COF (BMTA‐TFPM‐COF) with dia topology and non‐fold interpenetration for Au ion capture is first demonstrated. The constructed COF exhibits a high Brunauer–Emmett–Teller surface area of 1924 m2 g−1, with the pore volume of 1.85 cm3 g−1. The high surface area and abundant cavities as well as the abundant exposed CN linkages due to the non‐interpenetration enable to absorb Au3+ with high capacity (570.18 mg g−1), selectivity (99.5%), and efficiency (68.3% adsorption of maximum capacity in 5 min). This work provides a new strategy to design 3D COFs for ion capture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.