Abstract
This work aims at reducing the embedding distortion of prediction-error expansion (PE)-based reversible watermarking. In the classical PE embedding method proposed by Thodi and Rodriguez, the predicted value is rounded to integer number for integer prediction-error expansion (IPE) embedding. The rounding operation makes a constraint on a predictor’s performance. In this paper, we propose a non-integer PE (NIPE) embedding approach, which can proceed non-integer prediction errors for embedding data into an audio or image file by only expanding integer element of a prediction error while keeping its fractional element unchanged. The advantage of the NIPE embedding technique is that the NIPE technique can really bring a predictor into full play by estimating a sample/pixel in a noncausal way in a single pass since there is no rounding operation. A new noncausal image prediction method to estimate a pixel with four immediate pixels in a single pass is included in the proposed scheme. The proposed noncausal image predictor can provide better performance than Sachnev et al.’s noncausal double-set prediction method (where data prediction in two passes brings a distortion problem due to the fact that half of the pixels were predicted with the watermarked pixels). In comparison with existing several state-of-the-art works, experimental results have shown that the NIPE technique with the new noncausal prediction strategy can reduce the embedding distortion for the same embedding payload.
Highlights
Reversible watermarking techniques embed data in a host signal and allow for the original digital image to be exactly recovered
Several versions of prediction-error expansion (PE) reversible watermarking algorithms have been proposed in [14,15,16,17,18,19] and others in order to improve the performance of the PE schemes by focusing on the reduction of the size of the auxiliary information, the reduction of the prediction error, and the reduction of the embedding distortion
The non-integer PE (NIPE) technique can remedy a major drawback of Thodi and Rodriguez’s work that the predicted values should be rounded to integer number for data embedding
Summary
Reversible watermarking techniques embed data in a host signal (for example, an audio/image) and allow for the original digital image to be exactly recovered. Several versions of PE reversible watermarking algorithms have been proposed in [14,15,16,17,18,19] and others in order to improve the performance of the PE schemes by focusing on the reduction of the size of the auxiliary information (with the use of the sorting and histogram shifting techniques [15]), the reduction of the prediction error (by using multiple predictors [16], the prediction by flooring the average value of the four immediate pixels [15] and adaptive prediction [17]), and the reduction of the embedding distortion (by the pixel selection [17] and the low distortion transform by splitting the difference between the current pixel and its prediction context [18, 19]) These existing PE-based schemes share a common property, that is, the predicted value or its variety was rounded to integer value for expansion embedding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.