Abstract

Microstructural observation and high-resolution dilatometry were employed to investigate kinetics of martensitic transformation in high Cr ferritic creep-resistant steel upon different quenching/cooling rates. By incorporating the classical athermal nucleation and impingement correction, a non-instantaneous growth model for martensitic transformation has been developed. The developed model describes austenite/martensite interface mobility during martensite growth. The growth rate of martensite is found to be varied from 1 × 10−6 to 3 × 10−6 m/s. The low interface mobility suggests that it is not appropriate to presume the instantaneous growth behavior of martensite. Moreover, based on the proposed model, nucleation rate of martensite under different cooling rates is found to be nearly the same, while the growth rate of martensite is promoted by increasing the cooling rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.