Abstract
Enzyme replacement therapy is a treatment option for several lysosomal storage disorders. We reported previously that treatment of a knockout mouse model of the sphingolipid storage disease metachromatic leukodystrophy (MLD) by intravenous injection of recombinant human arylsulfatase A (rhASA) reduces sulfatide storage and improves nervous system pathology and function. Here, we show that treated mice can develop anti-rhASA antibodies, which impede sulfatide clearance without inhibiting enzyme activity. The neutralizing effect of antibodies was reproduced in cell culture models of MLD by demonstrating that mouse immune serum reduces the ability of rhASA to clear sulfatide from cultured ASA-deficient Schwann and kidney cells. We show that reduced clearance is due to an antibody-mediated blockade of mannose 6-phosphate receptor-dependent enzyme uptake, retargeting of rhASA from sulfatide-storing cells to macrophages, intracellular misrouting of rhASA, and reduction of enzyme stability. Induction of immunotolerance to rhASA by transgenic expression of an active site mutant of human ASA restores sulfatide clearance in mice. The data indicate that the influence of non-inhibitory antibodies must be more intensively considered in evaluating the therapeutic efficacy of enzyme replacement in lysosomal storage disorders in general and in patients without cross-reacting material specifically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.