Abstract

The estimation of parameters for a distribution function is a significant and prominent field within statistical inference. This particular problem holds great relevance in various domains, including industries, stock markets, image processing, and reliability studies. There are two recognized approaches to estimation: point estimation and interval estimation, also known as confidence intervals. In this study, our primary focus lies in the point estimation of parameters associated with an exponential dispersion distribution function. In this process, we consider one of the parameters as a random variable that requires estimation. To tackle this, we adopt a Bayesian inference approach utilizing a one-parameter dispersion distribution. We explore non-informative priors, such as uniform and Jeffrey's priors, and provide evidence of the effectiveness of our method through simulation studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.