Abstract
AbstractWe prove that there is a residual subset 𝒮 in Diff1(M) such that, for everyf∈𝒮, any homoclinic class offcontaining saddles of different indices (dimension of the unstable bundle) contains also an uncountable support of an invariant ergodic non-hyperbolic (one of the Lyapunov exponents is equal to zero) measure off.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.