Abstract

XRCC4 (X-ray cross-complementation group 4) and XLF (XRCC4-like factor) are two essential interacting proteins in the human NHEJ (non-homologous end-joining) pathway that repairs DNA DSBs (double-strand breaks). The individual crystal structures show that the dimeric proteins are homologues with protomers containing head domains and helical coiled-coil tails related by approximate two-fold symmetry. Biochemical, mutagenesis, biophysical and structural studies have identified the regions of interaction between the two proteins and suggested models for the XLF-XRCC4 complex. An 8.5 Å (1 Å = 0.1 nm) resolution crystal structure of XLF-XRCC4 solved by molecular replacement, together with gel filtration and nano-ESI (nano-electrospray ionization)-MS results, demonstrates that XLF and XRCC4 dimers interact through their head domains and form an alternating left-handed helical structure with polypeptide coiled coils and pseudo-dyads of individual XLF and XRCC4 dimers at right angles to the helical axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.