Abstract
In this paper, we consider an extension of the recently proposed bivariate Markov-switching multifractal model of Calvet, Fisher, and Thompson [2006. “Volatility Comovement: A Multifrequency Approach.” Journal of Econometrics 131: 179–215]. In particular, we allow correlations between volatility components to be non-homogeneous with two different parameters governing the volatility correlations at high and low frequencies. Specification tests confirm the added explanatory value of this specification. In order to explore its practical performance, we apply the model for computing value-at-risk statistics for different classes of financial assets and compare the results with the baseline, homogeneous bivariate multifractal model and the bivariate DCC-GARCH of Engle [2002. “Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models.” Journal of Business & Economic Statistics 20 (3): 339–350]. As it turns out, the multifractal model with heterogeneous volatility correlations provides more reliable results than both the homogeneous benchmark and the DCC-GARCH model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The European Journal of Finance
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.