Abstract
Some time ago, the Markov processes were introduced in biomedical sciences in order to study disease history events. Homogeneous and Non-homogeneous Markov processes are an important field of research into stochastic processes, especially when exact transition times are unknown and interval-censored observations are present in the analysis. Non-homogeneous Markov process should be used when the homogeneous assumption is too strong. However these sorts of models increase the complexity of the analysis and standard software is limited. In this paper, some methods for fitting non-homogeneous Markov models are reviewed and an algorithm is proposed for biomedical data analysis. The method has been applied to analyse breast cancer data. Specific software for this purpose has been implemented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.