Abstract
In some non-Hermitian systems, the eigenstates in the bulk are localized at the boundaries of the systems. This is called the non-Hermitian skin effect, and it has been studied mostly in discrete systems. In the present work, we study the non-Hermitian skin effect in a continuous periodic model. In a one-dimensional system, we show that the localization lengths are equal for all the eigenstates. Moreover, the localization length and the eigenspectra in a large system are independent of the types of open boundary conditions. These properties are also found in a non-Hermitian photonic crystal. Such remarkable behaviors in a continuous periodic model can be explained in terms of the non-Bloch band theory. By constructing the generalized Brillouin zone for a complex Bloch wave number, we derive the localization length and the eigenspectra under an open boundary condition. Furthermore, we show that the generalized Brillouin zone also has various physical properties, such as bulk-edge correspondence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.