Abstract

We propose a novel type of skin effects in non-Hermitian quantum many-body systems that we dub a "non-Hermitian Mott skin effect." This phenomenon is induced by the interplay between strong correlations and the non-Hermitian point-gap topology. The Mott skin effect induces extreme sensitivity to the boundary conditions only in the spin degree of freedom (i.e., the charge distribution is not sensitive to boundary conditions), which is in sharp contrast to the ordinary non-Hermitian skin effect in noninteracting systems. Concretely, we elucidate that a bosonic non-Hermitian chain exhibits the Mott skin effect in the strongly correlated regime by closely examining an effective Hamiltonian. The emergence of the Mott skin effect is also supported by numerical diagonalization of the bosonic chain. The difference between the ordinary non-Hermitian skin effect and the Mott skin effect is also reflected in the time evolution of physical quantities; under the time evolution spin accumulation is observed while the charge distribution remains spatially uniform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.