Abstract
By modifying and generalizing known supersymmetric models, we are able to find four different sets of one-dimensional Hamiltonians for the inverted harmonic oscillator. The first set of Hamiltonians is derived by extending the supersymmetric quantum mechanics with reflections to non-Hermitian supercharges. The second set is obtained by generalizing the supersymmetric quantum mechanics valid for non-Hermitian supercharges with the Dunkl derivative instead of [Formula: see text]. Also, by changing the derivative [Formula: see text] by the Dunkl derivative in the creation and annihilation-type operators of the standard inverted harmonic oscillator [Formula: see text], we generate the third set of Hamiltonians. The fourth set of Hamiltonians emerges by allowing a parameter of the supersymmetric two-body Calogero-type model to take imaginary values. The eigensolutions of definite parity for each set of Hamiltonians are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.