Abstract

Topological winding in non-Hermitian systems is generally associated to the Bloch band properties of lattice Hamiltonians. However, in certain non-Hermitian models, topological winding naturally arises from the dynamical evolution of the system and is related to a new form of geometric phase. Here we investigate dynamical topological winding in non-Hermitian photonic mesh lattices, where the mean survival time of an optical pulse circulating in coupled fiber loops is quantized and robust against Hamiltonian deformations. The suggested photonic model could provide an experimentally accessible platform for the observation of non-Hermitian dynamical topological windings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.