Abstract

A series of non-heme (μ-oxo)bis(μ-dicarboxylato)-bridged diiron(iii) complexes, [Fe2(O)(OOCH)2(L)2](2+)1, [Fe2(O)(OAc)2(L)2](2+)2, [Fe2(O)(Me3AcO)2(L)2](2+)3, [Fe2(O)(OBz)2(L)2](2+)4, [Fe2(O)(Ph2AcO)2(L)2](2+)5 and [Fe2(O)(Ph3AcO)3(L)2](2+)6, where L = N,N-dimethyl-N'-(pyrid-2-ylmethyl)ethylenediamine, OAc(-) = acetate, Me3AcO(-) = trimethylacetate, OBz(-) = benzoate, Ph2AcO(-) = diphenylacetate and Ph3AcO(-) = triphenylacetate, have been isolated and characterized using elemental analysis and spectral and electrochemical techniques. They have been studied as catalysts for the selective oxidation of alkanes using m-chloroperbenzoic acid (m-CPBA) as the oxidant. Complexes 2, 3, and 4 possess a distorted bioctahedral geometry in which each iron atom is coordinated to an oxygen atom of the μ-oxo bridge, two oxygen atoms of the μ-carboxylate bridge and three nitrogen atoms of the 3N ligand. In an acetonitrile/dichloromethane solvent mixture all the complexes display a d-d band characteristic of the triply bridged diiron(iii) core, revealing that they retain their identity in solution. Upon replacing electron-donating substituents on the bridging carboxylates by electron-withdrawing ones the E1/2 value of the one-electron Fe(III)Fe(III)→ Fe(III)Fe(II) reduction becomes less negative. On adding one equivalent of Et3N to a mixture of one equivalent of the complex and an excess of m-CPBA in the acetonitrile/dichloromethane solvent mixture an intense absorption band (λmax, 680-720 nm) appears, which corresponds to the formation of a mixture of complex species. All the complexes act as efficient catalysts for the hydroxylation of cyclohexane with 380-500 total turnover numbers and good alcohol selectivity (A/K, 6.0-10.1). Adamantane is selectively oxidized to 1-adamantanol and 2-adamantanol (3°/2°, 12.9-17.1) along with a small amount of 2-adamantanone (total TON, 381-476), and interestingly, the sterically demanding trimethylacetate bridge around the diiron(iii) centre leads to high 3°/2° bond selectivity; on the other hand, the sterically demanding triphenylacetate bridge gives a lower 3°/2° bond selectivity. A remarkable linear correlation between the pKa of the bridging carboxylate and TON for both cyclohexane and adamantane oxidation is observed, illustrating the highest catalytic activity for 3 with strongly electron-releasing trimethylacetate bridges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.