Abstract

The effects of the vacuum electromagnetic fluctuations and the radiation reaction fields on the time development of a simple microscopic system are identified using a new mathematical method. This is done by studying a charged mechanical oscillator (frequency Ω 0)within the realm of stochastic electrodynamics, where the vacuum plays the role of an energy reservoir. According to our approach, which may be regarded as a simple mathematical exercise, we show how the oscillator Liouville equation is transformed into a Schrodinger-like stochastic equation with a free parameter h′ with dimensions of action. The role of the physical Planck's constant h is introduced only through the zero-point vacuum electromagnetic fields. The perturbative and the exact solutions of the stochastic Schrodinger-like equation are presented for h′>0. The exact solutions for which h′<h are called sub-Heisenberg states. These nonperturbative solutions appear in the form of Gaussian, non-Heisenberg states for which the initial classical uncertainty relation takes the form 〈(δx 2)〉〈(δp) 2 〉=(h′/2) 2,which includes the limit of zero indeterminacy (h → 0). We show how the radiation reaction and the vacuum fields govern the evolution of these non-Heisenberg states in phase space, guaranteeing their decay to the stationary state with average energy hΩ 0 /2 and 〈(δx) 2 〉〈(δp) 2 〉=h 2 /4 at zero temperature. Environmental and thermal effects-are briefly discussed and the connection with similar works within the realm of quantum electrodynamics is also presented. We suggest some other applications of the classical non-Heisenberg states introduced in this paper and we also indicate experiments which might give concrete evidence of these states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.