Abstract
We show that with every separable classical Stäckel system of Benenti type on a Riemannian space one can associate, by a proper deformation of the metric tensor, a multi-parameter family of non-Hamiltonian systems on the same space, sharing the same trajectories and related to the seed system by appropriate reciprocal transformations. These systems are known as bi-cofactor systems and are integrable in quadratures as the seed Hamiltonian system is. We show that with each class of bi-cofactor systems a pair of separation curves can be related. We also investigate the conditions under which a given flat bi-cofactor system can be deformed to a family of geodesically equivalent flat bi-cofactor systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.