Abstract

Bone morphogenic protein-2 (BMP-2) is a well-known growth factor that can improve the biological performance of bone substitute materials. BMP-2 produced via bacterial expression systems are non-glycosylated (ng) whereas native and recombinant equivalents produced in mammalian cell expression systems are glycosylated (g) proteins. ngBMP-2 is less soluble, resulting in lower BMP-2 release from carriers as used as bone substitute materials. This seems promising for reducing the amount of included growth factor in bone substitute materials. Hence, it was hypothesized that ngBMP-2 would induce formation of the same amount of bone at an ectopic site at lower dosage as gBMP-2. To that end, gBMP-2 and ngBMP-2 were firstly in vitro comparatively evaluated for biological activity and release from a calcium phosphate (CaP) based bone substitute material. Thereafter, an ectopic implantation model in rats was used, in which gBMP-2 and ngBMP2 were loaded in various dosages (2–20μg/implant) on the CaP-based bone substitute material and implanted for 4 and 12weeks. The results revealed that both the in vitro biological activity of and the in vitro release of ngBMP-2 are lower compared to gBMP2. Upon ectopic implantation, however, ngBMP-2 loaded implants induced more bone formation at lower concentrations from 4-weeks onward compared to gBMP-2 equivalents, indicating the value of ngBMP-2 as a potential alternative for mammalian produced recombinant BMP-2 for bone regenerative therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.