Abstract

Although the long-term effects of all-trans retinoic acid (RA) on neuronal growth and differentiation have been intensively studied, nothing is known about its effect on synaptic transmission. Here we show that RA rapidly and specifically enhances the spontaneous acetylcholine release at developing neuromuscular synapses in Xenopus cell culture using whole-cell patch-clamp recording. Acute addition of RA dose-dependently and reversibly enhances the frequency of spontaneous synaptic currents (SSCs). Application of the lipophilic RA analogue all-trans retinol or RA metabolites produced by light-induced decomposition failed to provoke similar changes in SSC frequency, indicating the specificity of RA-induced facilitation of spontaneous transmitter release. Protein synthesis inhibitors anisomycin or cycloheximide had no effect on RA-induced SSC frequency facilitation. Treating cells with pan RA receptor (RAR) selective agonist or RARbeta-selective agonist, but not RARalpha-, RARgamma- or retinoid X receptor (RXR)-selective agonists, mimicked the action of RA. These results suggest that RA acts through the activation of RARbeta, to induce a rapid, non-genomic increase in the frequency of spontaneous transmitter release at developing neuromuscular synapses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call