Abstract

In this paper, we study non-Gaussianity generated by a single scalar field in slow-roll inflation in the framework of the non-relativistic general covariant Ho\v{r}ava-Lifshitz theory of gravity with the projectability condition and an arbitrary coupling constant $\lambda$, where $\lambda$ characterizes the deviation of the theory from general relativity (GR) in the infrared. We find that the leading effect of self-interaction, in contrary to the case of minimal scenario of GR, is in general of the order $\hat{\alpha}_{n} \epsilon^{3/2}$, where $\epsilon$ is a slow-roll parameter, and $\hat{\alpha}_{n} (n = 3, 5)$ are the dimensionless coupling coefficients of the six-order operators of the Lifshitz scalar, and have no contributions to power spectra and indices of both scalar and tensor. The bispectrum, comparing with the standard one given in GR, is enhanced, and gives rise to a large value of the nonlinearity parameter $f_{\text{NL}}$.We study how the modified dispersion relation with high order moment terms affects the evaluation of the mode function and in turn the bispectrum, and show explicitly that the mode function takes various asymptotic forms during different periods of its evolution. In particular, we find that it is in general of superpositions of oscillatory functions, instead of plane waves like in the minimal scenario of GR. This results in a large enhancement of the folded shape in the bispectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.