Abstract

Several conserved and/or gauge invariant quantities described as the second-order curvature perturbation have been given in the literature. We revisit various scenarios for the generation of second-order non-gaussianity in the primordial curvature perturbation \zeta, employing for the first time a unified notation and focusing on the normalisation f_{NL} of the bispectrum. When the classical curvature perturbation first appears a few Hubble times after horizon exit, |f_{NL}| is much less than 1 and is, therefore, negligible. Thereafter \zeta (and hence f_{NL}) is conserved as long as the pressure is a unique function of energy density (adiabatic pressure). Non-adiabatic pressure comes presumably only from the effect of fields, other than the one pointing along the inflationary trajectory, which are light during inflation (`light non-inflaton fields'). During single-component inflation f_{NL} is constant, but multi-component inflation might generate |f_{NL}| \sim 1 or bigger. Preheating can affect f_{NL} only in atypical scenarios where it involves light non-inflaton fields. The curvaton scenario typically gives f_{NL} \ll -1 or f_{NL} = +5/4. The inhomogeneous reheating scenario can give a wide range of values for f_{NL}. Unless there is a detection, observation can eventually provide a limit |f_{NL}| \lsim 1, at which level it will be crucial to calculate the precise observational limit using second order theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.