Abstract

We provide analytic solutions for the power spectrum and bispectrum of curvature fluctuations produced by a step feature in the inflaton potential, valid in the limit that the step is short and sharp. In this limit, the bispectrum is strongly scale dependent and its effective non-linearity attains a large oscillatory amplitude. The perturbations to the curvature power spectrum, on the other hand, remain a small component on top of the usual spectrum of fluctuations generated by slow roll. We utilize our analytic solutions to assess the observability of the predicted non-Gaussian signatures and show that, if present, only very sharp steps on scales larger than ~ 2 Gpc are likely to be able to be detected by Planck. Such features are not only consistent with WMAP7 data, but can also improve its likelihood by 2 Delta ln L ~ 12 for two extra parameters, the step location and height. If this improvement were due to a slow roll violating step as considered here, a bispectrum or corresponding polarization power spectrum detection would provide definitive checks as to its primordial origin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.