Abstract
Particle random motion can exhibit both anomalous diffusion and non-Gaussian statistics in some physical systems. Anomalous diffusion is quantified by a deviation from alpha=1 in a power law for a particle's mean-square displacement, MSD proportional, variant(Deltat)alpha. A deviation from Gaussian statistics for a probability distribution function (PDF) is quantified by fitting to a kappa function or Tsallis distribution, with a fit parameter q. We report an experiment and simulations to test a theory that connects anomalous diffusion and non-Gaussian statistics. In the experiment, a single-layer dusty plasma, which behaved as a two-dimensional (2D) driven-dissipative system, had a non-Gaussian PDF. By adjusting an externally applied laser heating, q was varied over a wide range. A correlation between the deviations from Gaussian statistics and normal diffusion for a 2D liquid was found in the experiment. This correlation indicates a connection between anomalous diffusion and non-Gaussian statistics. However, such a connection is lacking in equilibrium 2D Yukawa liquids, as demonstrated in numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.