Abstract

We examine the statistics of active scalar fluctuations in high-Rayleigh number fingering convection with high-resolution three-dimensional numerical experiments. Marked non-Gaussian tails are found in the one-point distribution of buoyancy fluctuations. A modified theory based on an original approach by Yakhot (1989) is used to model the active scalar distributions as a function of the conditional expectation values of scalar dissipation and fluxes in the flow. Simple models for these two quantities highlight the role of blob-like coherent structures for scalar statistics in fingering convection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.